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Dissipative particle dynamics �DPD� is a mesoscopic method in which coarse graining is done at the
molecular level to capture the physics at the meso level. In this paper, we present a DPD model for two-phase
flows involving liquid and vapor phases. The model is based on mean-field theory. Phase segregation between
the two phases is simulated by the choice of an equation of state with a van der Waals loop. Surface tension is
modeled by a term that depends on higher-order density gradients and accounts for long-range attractive forces.
To test the model, we present results from simulations of a liquid layer, several liquid cylinders of varying size
to verify the Laplace’s law, small- and large-amplitude liquid cylinder oscillations and capillary waves. In all
these cases we compare DPD results with results available from analytical solutions.
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I. INTRODUCTION

Two-phase flows in which interfacial physics is important
arise in several applications. These include liquid jet
breakup, drop collisions, and drop breakup. Experimental
studies of such flows by themselves are not able to provide a
complete understanding of the physics because of the mul-
tiple scales associated with the physical situation, not all of
which can be resolved. Computational methods hold out the
possibility of having fully controlled “numerical” experi-
ments to investigate the influence of physical parameters.
Due to the complex underlying physics of the problems,
however, computational investigations are also challenging
as the simulation of the interface requires information about
its location and shape, which needs to be determined along
with the flow field. Conventional approaches to these prob-
lems include front-tracking �1� and front-capturing methods
�2,3� that involve solution of the Navier-Stokes equations.
More recently lattice-Boltzmann methods �LBM� �4–6� have
been employed for these simulations �7,8�.

When the length scales of interest in a problem lie be-
tween the molecular and macroscopic levels, then mesos-
copic simulations, in which coarse graining is done to obtain
the relevant length and time scales, are promising. The term
mesoscopic means a degree of spatial and temporal resolu-
tion where we can capture phenomena that occur within
length scales of 10–1000 nm and time scales of 1 ns–10 ms
�9�. An advantage of using mesoscopic methods for model-
ing two-phase systems is that the interfacial forces can be
incorporated from a fundamental viewpoint starting from an
equation of state. An interface can be maintained between
the two phases without an explicit need for tracking or cap-
turing it.

Dissipative particle dynamics �DPD� �10� is a relatively
new particle-based mesoscopic method that includes thermal
fluctuations and offers flexibility in choosing an interparticle
potential. In DPD, a coarse graining is done at the molecular
level to capture the physics at the meso level. Hence, each

DPD particle represents a cluster of actual molecules that
interact according to certain rules. DPD has been applied to
various complex systems such as polymer suspensions
�11–17�, colloids �18–20�, drops in shear field �using a bi-
nary fluid model� �21,22�, and flow of biological matter �23�.

The binary fluid model of DPD has been used for simu-
lations of domain growth and phase separation by Coveney
et al. �24�. Dzwinel et al. �25� used the binary fluid model to
simulate Rayleigh-Taylor instability in the mesoscale. Al-
though some progress has been made �26–29�, the modeling
of two-phase flows with DPD remains largely unexplored.
Three models have been proposed in the literature for two-
phase systems involving a liquid and vapor phase. Pagona-
barraga et al. �26,27� developed a model in which they in-
troduced a density-dependent term for the conservative force.
They used a modified van der Waals equation of state, which
had additional contributions from terms cubic in density.
They used the same cut-off radius for the attractive and re-
pulsive components of the conservative force between the
DPD particles. In their model, as pointed out by the authors,
the sign of surface tension is dependent on the choice of
simulation parameters for the equation of state. A model pro-
posed by Warren �28,30� employed a form of conservative
force that had different cut-off radii for the attractive and
repulsive components of forces of interaction. This model
was developed for the simulation of free-surface flows. Liu
et al. �29� suggested a model based on different influence
ranges for attractive and repulsive forces. This is similar in
concept to the model proposed by Warren �28,30�.

In this work, we have developed a model in which the
free energy of the fluid has a dependence on density and its
gradients. These gradients account for the excess free energy
in the interfacial region and are related to the long-range
attractive forces. This gives a diffuse-interface �31� formula-
tion for DPD in which the density varies smoothly between
the liquid and vapor phases. The conservative force is mod-
eled as a central force whose amplitude depends on density
and its gradients. The terms dependent on density gradients
become important in the interfacial region and give rise to
surface tension. The strength of surface tension can be con-
trolled using a free parameter. We have tested the model for
static simulations of a liquid layer and verification of
Laplace’s law. The model has also been tested for problems
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involving interfacial dynamics. These include the small- and
large-amplitude oscillations of liquid cylinders and simula-
tions of capillary waves. Development of DPD two-phase
models is of interest as DPD has the potential to simulate
problems where thermal fluctuations control the outcome.
For example, the model developed here can be used for
studying thermally induced breakup of liquid cylinders as
done by Kawano �32� using molecular dynamics. It can also
be used for studying the breakup of nanojets where the con-
tinuum theory over predicts the breakup length as shown by
the molecular dynamics simulations of Moseler et al. �33�.

This paper is organized as follows. In Sec. II, we describe
the two-phase DPD model. In Sec. III, we will present results
from the numerical simulations of a liquid layer problem,
verification of Laplace’s law, small- and large-amplitude os-
cillations of liquid cylinders, and capillary waves. We will
also present the results from liquid cylinder formation in
liquid-vapor simulations performed at different temperatures.
We will conclude the paper in Sec. IV with summary and
conclusions.

II. THE TWO-PHASE DPD MODEL

In this section, a description of the two-phase DPD model
will be provided. As stated earlier, DPD is a coarse grained
representation of molecular dynamics �MD� �34–36�. A
popular model for the interatomic potential in MD simula-
tions is the Lennard-Jones 6-12 potential, graphically repre-
sented in Fig. 1. In this figure, r* on the x coordinate is r /�0
for the Lennard-Jones potential where r is the interatomic
separation and �0 is the atomic diameter. We see from this
figure that the Lennard-Jones potential has a steep slope for
lower values of interatomic separation that restricts the nu-
merical time step that can be taken. This steep slope gives a
hard-core nature to the Lennard-Jones potential. A character-
istic length for the Lennard-Jones potential is the atomic di-

ameter, which is of the order of a few Angstroms. If we are
interested in meso-level simulations, MD might prove to be
unjustifiably expensive from a computational point of view.
In this case, we can do a coarse graining at the molecular
level by packing actual atoms/molecules together to form
virtual particles. This is the essence of dissipative particle
dynamics �DPD�. The virtual particles are the DPD particles.
The coarse graining results in the softening of the hard-core
interatomic potential as shown in Fig. 1. In this figure, for
the DPD potential r* is r /rc where r is the interparticle sepa-
ration and rc is the cut-off radius �see Eq. �2��. The soft-core
DPD potential has a slope that is much shallower than the
slope of the hard-core Lennard-Jones potential. Due to this,
we can take time steps in DPD that are much larger than
those possible in MD computations. The characteristic length
for this potential is in the meso level, which is several orders
of magnitude greater than the length scale for the Lennard-
Jones potential. The description of the model below includes
a brief discussion of the DPD method followed by a detailed
discussion of the two-phase model. We use an isothermal
DPD model in this work. For performing simulations at a
constant total energy of the system, energy conserving forms
of DPD have also been proposed in literature �37,38�.

Dissipative particle dynamics considers a system of N
particles in continuous space. The motion of any DPD par-
ticle i is governed by Newton’s laws given by

dri

dt
= vi,

dvi

dt
= fi, �1�

where ri, vi, and fi denote its position, velocity and the force
that acts on it, respectively. In writing Eq. �1� the mass of the
DPD particle has been taken to be unity.

The force of interaction between DPD particles is split
into three components, namely the dissipative, random, and
conservative forces. The dissipative force is responsible for
the viscous effects in the system and it acts like a viscous
damper by reducing the relative velocity between DPD par-
ticles. The random force is added to account for the lost
degrees of freedom. This loss is incurred because of the
coarse graining that is done at the molecular level to capture
physics at the meso level. So we see that the dissipative force
tends to cool down the DPD system while the random force
tends to heat it up. So, for an isothermal system a balance
condition is required between these components to maintain
a constant temperature for the system. This is achieved by
applying the fluctuation-dissipation theorem �39�. This bal-
ance condition will be shown later in this section. The dissi-
pative and random forces are responsible for the hydrody-
namic behavior of the system. The conservative force is
responsible for the thermodynamic behavior of the DPD sys-
tem. All the forces are short-range in nature and have a range
equal to the cut-off length rc of the model. The three forces,
namely, dissipative, Fij

D, random, Fij
R, and conservative, Fij

C,
between two DPD particles i and j are given by

FIG. 1. �Color online� Hard-core Lennard-Jones potential vs the
soft-core DPD potential; r*=r /�0 for the Lennard-Jones potential,
r*=r /rc for DPD, see text.
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Fij
D = − ��D�rij��eij · vij�eij ,

Fij
R = ��R�rij��ijeij , �2�

and

Fij
C = −

���rij�
�rij

eij .

Here, eij is a unit vector given by eij =rij / �rij�, where rij =ri
−r j, vij =vi−v j, � is the amplitude of the dissipative force, �
is the amplitude of random force, �D and �R are the weight
functions for the dissipative and random forces, respectively,
and � is the free energy per particle. The term �ij in Eq. �2�
is a random variable that follows Gaussian statistics and has
the following properties:

��ij�t�� = 0,

��ij�t��kl�t��� = ��ik� jl + �il� jk���t − t�� . �3�

The form of conservative force which has been chosen by
many researchers �40� for their single-phase and binary fluid
simulations is a linear function in interparticle separation
having a fixed maximum value that it can attain. This form of
conservative force Fij

C between particles i and j is given by

Fij
C = aij�1 −

rij

rc
	eij , �4�

where aij is a repulsion parameter between particles i and j.
It is the maximum value of the conservative force and is
related to the compressibility of the fluid being modeled
�40,41�, rij is the interparticle separation, rc is the cut-off
radius, and eij is the unit vector from particle j to i. From Eq.
�2� we see that the conservative force is derived from the free
energy. So, we can model a variety of physical systems given
a form of free energy. In fact, we can also use the Lennard-
Jones potential to derive the conservative force in DPD. For
this case, the dissipative and random forces would act as a
thermostat for the molecular dynamics system. Soddemann
et al. �42� have shown that DPD is a useful thermostat for
molecular dynamics systems when the interest lies in study-
ing the hydrodynamic behavior of the system. They showed
that the DPD thermostat allows for larger time steps as com-
pared to the time steps possible for constant energy simula-
tions in MD.

The manner in which the pair-wise forces are defined
along with the use of relative positions and velocities makes
the DPD method fully isotropic and Galilean invariant. It is
possible to derive the macroscopic conservation equations
starting from the DPD equations of motion given in Eq. �2�.
This derivation, along with the calculation of transport prop-
erties of a DPD fluid based on simulation parameters, has
been presented in the literature by several authors �43–46�.

Espanol et al. �47� showed that DPD recovers the correct
Gibbs-Boltzmann distribution at equilibrium if the coeffi-
cients and the weight functions in the dissipative and random
forces are related by

�D�r� = ��R�r��2, �2 = 2�kBT . �5�

Equation �5� is a balance condition between the dissipative
and random forces for an isothermal DPD system and is
derived by applying the fluctuation-dissipation theorem �39�.

Groot et al. �40� have shown through a heuristic argument
that the random force takes the form

Fij
R = ��R�rij��ij��t�−1/2eij , �6�

where �ij is a random number that follows Gaussian statistics
and has zero mean and unit variance. The weight functions
for the dissipative and the random forces are taken to be

�D�r� = ��R�r��2 = 
�1 −
r

rc
	2

, �r 	 rc�

0, �r 
 rc� .
� �7�

Details about the choice of simulation parameters in DPD
are given in the article by Groot et al. �40�. In this work, the
equations of motion have been integrated using the
modified-Verlet scheme of Groot et al. �40�. This scheme is
given by

ri�t + �t� = ri�t� + �tvi�t� +
1

2
��t�2fi�t� ,

ṽi�t + �t� = vi�t� + ��tfi�t� ,

fi�t + �t� = fi„r�t + �t�, ṽ�t + �t�… ,

vi�t + �t� = vi�t� +
1

2
�t�fi�t� + fi�t + �t�� , �8�

where r, v, and f denote the position, velocity, and force
vectors, respectively, t denotes time, i denotes a particle tag,
and � denotes an empirical parameter. In this algorithm, a
guessed value ṽ for velocity is used for calculating the
forces, which are velocity dependent as seen in Eq. �2�. This
guess is later corrected in the last step of the algorithm.

Now, we will turn our attention to the two-phase model,
the development of which is the primary contribution of this
work. As discussed earlier, the dissipative and random forces
are responsible for the hydrodynamic while the conservative
force is responsible for the thermodynamic behavior of the
system. The modeling of two-phase systems is dependent on
the thermodynamic behavior of the system. Hence, we turn
our attention to the conservative force. The form of conser-
vative force shown in Eq. �4� gives an equation of state that
is quadratic in density �40� and a potential as shown in Fig.
1. To model a two-phase system involving liquid and vapor
phases, we need an equation of state with a van der Waals
loop as shown in Fig. 2. The part of the equation of state that
lies between points b and c in this figure has negative com-
pressibility which is unphysical. Hence, we cannot have a
stable two-phase system in this part of the p-v diagram. This
constraint leads to a segregation of the liquid and vapor
phases, the density of which is determined by Maxwell’s
equal area points a and d �48�. An examination of Fig. 1
reveals that the DPD potential corresponding to the conser-
vative force in Eq. �4� does not carry information about the
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long-range attractive forces which are responsible for surface
tension between the liquid and vapor phases. To account for
these long-range attractive forces, we turn to mean-field
theory �49,50�, which provides a methodology for compen-
sating this lost information. The mean-field value of free-
energy per particle is given by �50�

�m =� uatt�r��dr , �9�

where uatt is the attractive part of interaction potential, r is
the interparticle separation, and � is the number density. Us-
ing a Taylor series expansion for density only the even de-
rivatives of density survive and we get the following expres-
sion for free energy:

�m = − a� − �2� , �10�

where

a = −
1

2
�

r��0

uatt�r�dr ,

and

 = −
1

6
�

r��0

r2uatt�r�dr , �11�

in which �0 is the molecular diameter. The parameters a and
 arise due to the long-range attractive forces and give rise to
the weak attraction and surface tension, respectively, be-
tween the DPD particles at the coarse-grained level.

Now we are in a position to formulate the conservative
force. The form of the conservative force FC, which gives
rise to phase segregation and surface tension in a liquid-
vapor system, is given by

FC = − ��nonideal + FS, �12�

where �nonideal represents the nonideal part of the free energy
� and superscript S represents the surface tension compo-
nent. The first term in the equation above represents the con-
tribution due to the nonideal part of the equation of state. We
consider the contribution only from the nonideal part be-
cause the ideal part has already been considered through the
random and dissipative components.

In this work, we use the van der Waals equation of state
given by

p =
�kBT

1 − b�
− a�2, �13�

where a and b are the parameters for the equation of state, kB
is the Boltzmann constant, T is the temperature, and � is the
number density. As seen in Eq. �11� the parameter a accounts
for the long-range attractive behavior. The parameter b is
responsible for exclusion volume effects. The free energy
can be derived from Eq. �13� by using the relation

p = −
��

�v
, �14�

where p is the pressure and v the specific volume. Using the
expression for equation of state in Eq. �13�, the expression
for free energy � is

� = − kBT ln�1 − b�� − a� + kBT ln � . �15�

The first term arises due to the exclusion volume effects and
is responsible for repulsion between the particles. The origin
of the second term in this equation is seen in Eq. �10�. The
third term arises from the ideal part of the equation of state.
In Eq. �12� we need only the nonideal part which is obtained
by subtracting the ideal component from Eq. �15� and is
given by

�non-ideal = − kBT ln�1 − b�� − a� . �16�

We see that the nonideal part of free energy is dependent on
the density of particles. Hence, we need a methodology for
density calculation. We calculate the density in the vicinity
of a particle i as a weighted average of contributions from its
neighbors within its interaction range. This definition is also
used for density calculations in smoothed particle hydrody-
namics �51� and is given by

�i = 
j=1

N

w�rij� , �17�

where i and j are particle tags, N is the number of particles,
rij is the interparticle separation, and w is the normalized
weight function such that �0

rc2�rw�r�dr=1 for two-
dimensional systems. For reasons that will be discussed later,
we choose the Lucy weight function �52� for density calcu-
lations, which is different from the weight functions used in
the calculation of dissipative and random forces in Eq. �7�.
This weight function w for a two-dimensional case is given
by

w�r,rc� = 
 5

�rc
2�1 +

3r

rc
	�1 −

r

rc
	3

if r 	 rc

0 if r � rc,
� �18�

where r is the interparticle separation and rc is the cut-off
radius for the DPD method.

When the mean-field theory is employed, the form taken
by the surface tension force FS in Eq. �12� is given by

FIG. 2. P-v diagram for a van der Waals equation of state.
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FS =  � �2� , �19�

where  is the surface tension parameter appearing in Eq.
�11� and � is the number density. This form is evident from
the expression for mean-field free energy in Eq. �10�. Sub-
stituting Eqs. �16� and �19�, Eq. �12� takes the form

FC = ��kBT ln�1 − b�� + a�� +  � �2� . �20�

We see from this equation that the conservative force de-
pends on density as well as its gradients. To compute the
surface tension term in Eq. �19�, we use the definition of
density in Eq. �17�. We can see from Eq. �19� that the qua-
dratic weight function used in Eq. �7� for dissipative and
random forces will not be appropriate for density calcula-
tions as we need to calculate higher-order density derivatives
in this equation. Hence, the Lucy weight function �52� in Eq.
�18� is chosen.

Using the methodology presented above, the interparticle
conservative force Fij

C takes the final form

�21�

where wij
�1� and wij

�3� denote the first and third derivatives of
the weight function in Eq. �18� with respect to the interpar-
ticle separation. In this equation, the term labeled �a� is re-
sponsible for phase segregation while the term labeled �b� is
responsible for surface tension. So the dissipative and ran-
dom forces from Eq. �2� and the conservative force from Eq.
�21� give the interparticle forces of interaction for the two-
phase DPD model. The model for the interparticle conserva-
tive force is completely specified by Eqs. �17�, �18�, and
�21�.

The parameters that are required for specifying the inter-
particle conservative force are a, b, , rc, and kBT. The ap-
pearance of third derivatives of the weight function in term
�b� is related to the form of surface tension force in Eq. �19�
and the definition of density in terms of weight function as
given by Eq. �17�. The amplitude of interparticle conserva-
tive force in Eq. �21� depends on functions of density and
interparticle separation. In this sense, it is similar to the
model proposed by Warren �28,30�. The two-phase model
that is developed here is based on mean-field theory. The
mean-field theory begins to fail in the vicinity of critical
point �50� and the model should not be applied to near-
critical systems. The correlations present in the system will
also make the mean-field expressions for a and  in Eq. �11�
approximate. Next, we will present the results from test cases
that were performed using this two-phase model.

III. NUMERICAL SIMULATIONS

In this section, we will describe several simulations that
have been carried out to assess the accuracy of the two-phase
DPD model. An important consideration that becomes im-
portant for methods like DPD is thermal fluctuations at rela-
tively small scales. When our interest lies in the description

of interfacial phenomena, the particles at the interface have
energies from thermal motion as well as from surface tension
forces. The relative importance of the thermal fluctuations
can be assessed by considering a ratio of the thermal length
scale lT to a characteristic physical length scale L. The ther-
mal length scale lT �33� based on the temperature T and
surface tension �S is defined as follows:

lT =�kBT

�s
, �22�

where kB is the Boltzmann constant. When performing simu-
lations involving an interface, this length scale corresponds
to that of thermally induced surface fluctuations. For a prob-
lem with characteristic physical length L we can define a
non-dimensional length l* as follows:

l* =
L

lT
. �23�

It is important that l*�1 for us be able to distinguish surface
tension related dynamics from thermally induced dynamics.
Unless stated otherwise, all the parameters in numerical
simulations that follow are in DPD units. All the simulations
performed in this work are in two dimensions.

A. Liquid layer simulations

In this section, we will describe the simulation of a two-
dimensional liquid layer. The surface tension obtained from
this simulation is then compared with the values obtained
from simulations carried out to assess the accuracy of the
model to reproduce Laplace’s law and small-amplitude oscil-
lations of liquid cylinders.

For the two-phase model developed in this work, surface
tension is related to the parameter  through the relationship
�50,53�

�s = �
−�

� � ��

�n
	2

dn , �24�

where �s is the surface tension,  is the surface tension pa-
rameter for the two-phase model defined by Eq. �11�, � is the
number density, and n is the direction that is normal to the
interface. To perform this calculation, we consider a two-
dimensional problem in which a planar interface exists be-
tween the liquid and vapor phases. The computational set-up
for this problem is shown in Fig. 3. The liquid layer lies in
the middle of the computational domain. Periodic boundary
conditions �34� are applied along the four boundaries of the
computational domain. This simulation was carried out with
10 000 particles, all of which were initially arranged in the
liquid layer according to a simple cubic arrangement.

The set of parameters for this simulation is given in Table
I. When choosing the simulation parameters, we ensure that
we satisfy the mean-field limit, i.e., the ratio of cut-off radius
to the average interparticle separation should be much
greater than one. The amplitudes for dissipative and random
forces are chosen to give a low value of viscosity because the
surface tension value from this simulation is compared with
the surface tension value obtained from oscillations of liquid
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cylinders where the analytical solution is available only with
an inviscid approximation. The temperature for this simula-
tion is such that T /Tcritical=0.59. These parameters corre-
spond to a condition in which the ambient is a vacuum.
Equation �11� reveals that the value of parameter  should be
smaller than the value of parameter a �49�. We found in our
work that the code becomes unstable when  is increased
beyond a certain value. The thickness of the liquid layer
being simulated for this problem is about 69 times the ther-
mal length scale defined in Eq. �22�.

To analyze the data generated and to get the density pro-
file, we use a post-processing scheme that divides the liquid
layer into a number of fine layers of equal thickness. The
density inside each fine layer is calculated by counting the
number of particles that lie within it and dividing by its
volume. For the particular simulation presented here the den-
sity profile is obtained by averaging over 800 snapshots of
the liquid layer after equilibrium is reached. This is neces-
sary to remove the noise from the data.

After applying this scheme and splitting the interfacial
region into 17 fine layers, we get the interfacial density pro-
file shown in Fig. 4. We see that the density varies smoothly
from a high value in the liquid layer to a zero value corre-
sponding to the vacuum surrounding the liquid. This profile
is then used to calculate the surface tension from Eq. �24�.
For performing the numerical integration required in this
equation, we use the second-order trapezoidal rule. The sur-
face tension from these calculations is determined to be �s
=1.15±0.01. The error estimate reported here is determined
by using the standard deviation in the mean values of densi-
ties in the fine layers. The thickness of the interfacial region
was found to be of the same order as the cut-off radius of the
DPD model.

B. Laplace law simulations

In this section, we will describe the simulations carried
out to assess the ability of the two-phase model to reproduce
the Laplace law. This is a standard test case for verification
of two-phase models under static conditions. The Laplace
law gives a relationship between the pressures inside and
outside of a drop at equilibrium. Due to the surface tension
effects, the pressure inside a drop is higher than the pressure
outside and this pressure differential also depends on the
curvature of the drop. The relationship is given by �50�

pin − pout =
�d − 1��s

R
, �25�

where p denotes the pressure, the subscripts in and out de-
note the region inside and outside of the drop, respectively,
�s is the surface tension, R the radius of curvature, and d the
dimensionality of the problem.

FIG. 3. Computational setup for the liquid layer problem.

TABLE I. Parameters for the simulation of a liquid layer.

Parameter

Equation in
which the
parameter
appears

Value in
DPD units

kBT �5� and �21� 2.1�10−2

a �van der Waals parameter� �21� 3.012�10−3

b �van der Waals parameter� �21� 2.5�10−2

Mean-field critical density — 13.33

Mean-field critical temperature — 3.57�10−2

� �2� 6.13�10−2

 �20� 8.0�10−4

Time step �t �6� and �8� 1.0�10−2

rc �7� and �18� 1.11

N — 10 000

Domain dimensions �x � y� — 33.806�33.806

FIG. 4. Interfacial density profile for the liquid layer problem;
black dots indicate the average value in a fine layer while the solid
line is a fit to this data. Values are in DPD units.
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The simulation parameters are the same as those in Table
I. We use the virial equation of state to calculate the pressure
of the DPD fluid. The calculation of pressure inside any vol-
ume V containing a set of DPD particles can be performed by
using the expression �34,54�

p = �kBT +
1

2dV


i


j

rij · Fij
C, �26�

where p denotes the pressure, � the number density, kB the
Boltzmann constant, T the temperature, d the dimensionality
of the problem, V the volume, rij the interparticle separation
vector, i and j the particle tags, and Fij

C the conservative part
of the DPD interparticle forces. It should be noted that the
summation in Eq. �26� should be performed over all particles
i that lie within the volume V and all possible particles j that
can interact with i �55�. This definition of pressure is generic
and can be used at any point where the pressure is desired.
The computations for this test problem were performed in
two dimensions and hence the Laplace law for this case is

pin − pout =
�s

R
. �27�

The initial setup for the simulations is shown in Fig. 5. All
the particles are arranged inside an elliptical region accord-
ing to a simple cubic arrangement. The density is set to be
equal to the equilibrium value determined from liquid layer
simulations. Periodic boundary conditions �34� are applied at
the boundaries of the computational domain. The initial
shape of the group of particles can be any regular arrange-
ment such as triangle, square, or ellipse. By regular we mean
an arrangement where the initial density is uniform. If such
an arrangement is not chosen, the simulations tend to be
unstable. All the regular arrangements are equivalent for this
simulation because we are interested in the static pressure
inside and outside of the drop. After equilibrium is reached,
the system has no memory of the initial configuration and it
attains a circular shape. The reason for choosing an elliptical

configuration is that we use the same computations for oscil-
lation studies of liquid cylinders.

Based on the discussion that we have had so far, we are in
a position to calculate pressure inside the liquid cylinder. As
pointed out earlier, the simulation parameters that are chosen
in this case are such that the vapor phase is of negligible
density, which means that essentially we have a vacuum out-
side the liquid cylinder. To calculate the pressure inside the
liquid cylinder, we have chosen a virial radius r that is 0.7
times the equilibrium radius R of the cylinder. This choice
has been made to avoid the pressure fluctuations near the
interface that may lead to inaccuracies in calculating the
pressure inside the drop. To obtain R we use the number
density inside the equilibrated cylinder. Using the definition
of number density we can get R from the following relation-
ship:

R =� N

��eq
, �28�

where N is the number of particles inside the cylinder, and
�eq is the number density inside the equilibrated cylinder.

We are now in a position to determine the surface tension
from Eq. �27�. To do this and to establish the relationship
between the pressure difference and 1/R we performed seven
simulations with 6400, 10 000, 14 400, 19 600, 25 600,
32 400, and 40 000 particles, respectively, keeping all other
simulation parameters constant. The change in the number of
particles results in cylinders of different sizes. The size of the
computational domain in DPD units is fixed at 80�80 for all
the simulations. The results obtained are presented in Fig. 6.
The pressure is calculated by averaging the instantaneous
values obtained from Eq. �26� over 50 000 time steps. We see
that the pressure difference varies linearly with 1/R. The
data obtained is fitted to a line passing through the origin,
and the surface tension �s is determined to be 1.19±0.02 in
DPD units from Eq. �27�. The error estimate reported here is

FIG. 5. �Color online� Initial configuration of DPD particles for
the Laplace law simulation. FIG. 6. Verification of Laplace law for the two-phase DPD

model. Values are in DPD units.
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determined by the standard deviation in the mean value of
pressure. It was seen that the pressure inside the liquid cyl-
inder oscillates initially before reaching a steady value be-
cause of the non-equilibrium initial condition.

C. Oscillations of a liquid cylinder

Next, we will describe simulations of liquid cylinder os-
cillations performed to test the two-phase DPD model. This
test problem involves simulations under dynamical condi-
tions and is, hence, different in nature from the previous two
simulations. We will present the simulation results for cylin-
ders undergoing small-amplitude oscillations and then for
cylinders undergoing large-amplitude oscillations. In the case
of small-amplitude oscillations, the computed time period
will be used for getting the surface tension and this value
will be compared with the value obtained from Laplace’s law
simulations. The setup is the same as that for reproducing
Laplace law in the previous section, except that here we are
interested in the transient behavior of the cylinder as opposed
to the static behavior in the previous case. The liquid cylin-
der oscillates because the equilibrium shape which mini-
mizes the surface energy is circular. But if we start with a
noncircular shape there is a pressure imbalance between
points with different local values of radius of curvature. It is
this imbalance that makes the cylinders �or drops in three
dimensions� oscillate and relax to an equilibrium circular
shape.

1. Small-amplitude oscillations

For cylinders undergoing small-amplitude oscillations, the
time period T of oscillations has been analytically derived by
Rayleigh �56� for an inviscid fluid and is given by

T = 2���R3

6�s
, �29�

where � denotes the number density, R the equilibrium radius
of the circular cylinder, and �s the surface tension. A nondi-
mensional Reynolds number Re �57� can be defined in this
problem as

Re =
1

�
��sR

�
, �30�

where � is the viscosity of the DPD fluid. The time period
given by Eq. �29� is valid for the case when Re�1. In the
simulations performed here, the Reynolds number is typi-
cally of the order of 10 and hence this condition is approxi-
mately satisfied. The time period of oscillations obtained
from DPD simulations can be used in Eq. �29� to get the
value of surface tension, knowing � and R.

The computational set-up is shown in Fig. 5. The simula-
tion parameters are the same as those for Laplace law simu-
lations. 10 000 particles are used for this simulation. We start
with an elliptical liquid cylinder that has an aspect ratio of
1.4. The particles are placed according to a simple cubic
arrangement inside this cylinder. This ellipse is then allowed
to evolve with time, and the oscillatory behavior is studied.
The transient movement of the interface along the x and y

directions is examined. To do this, an averaging procedure in
which the coordinates of all the particles within a cell are
used to define the interfacial location is employed. We know
that the density varies from a high value in the liquid region,
�l, to a low value, �v, in the vapor region. We define the
interface to be at location where the density is ��l+�v� /2. All
the particles that lie in a sampling window of thickness
±��l+�v� /8 on either side of the interface are used for ob-
taining the interfacial location. The size of the sampling win-
dow is selected such that results are size-independent. The
diameter of the liquid cylinder being simulated in this prob-
lem is 75.6 times the thermal length scale defined in
Eq. �22�.

Figure 7 shows a plot of the interfacial location along the
x and y axes as a function of time. We see that the amplitude
of oscillations decays with time. Figure 8 shows snapshots of
oscillations of this liquid cylinder. We see that the oscilla-
tions have a time period of about 400 time units. Hence, the
cylinder changes its orientation by 90° after every 200 time
steps. Capillary waves induced by thermal fluctuations are
visible on the surface of the liquid cylinder. Such thermally
induced capillary waves have also been observed in molecu-
lar dynamics simulations done by Arcidiacono et al. �57�.
Thermal fluctuations are responsible for the fluctuations in
interfacial location observed in Fig. 7.

The time period of oscillations from this simulation is
415±10 in DPD units. The value of surface tension, �s, es-
timated by employing Eq. �29� is 1.14±0.06. To determine
the error estimate, a fast Fourier transform of the signal in
Fig. 7 is performed. The error is determined as the difference
between the frequency corresponding to the most powerful
signal and weighted-average frequency of other powerful
signals. The mean value of �s differs from the mean value
obtained from the Laplace law simulations by 4.2%. It
should be pointed that the analytical solution is for an invis-
cid case. But, in the DPD method we cannot perform simu-
lations of an inviscid fluid as the dissipative, random and
conservative forces always give rise to a viscous fluid.

FIG. 7. �Color online� Interfacial location along the x and y axes
as a function of time. Values are in DPD units.
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2. Large-amplitude oscillations

In this section, we will present the results for large-
amplitude oscillations of liquid cylinders. The computational
set-up for these simulations is the same as that for small-
amplitude oscillations. The initial configuration consists of a
liquid cylinder at a density equal to the equilibrium density
of the liquid phase. The particles are placed according to a
simple cubic arrangement. The difference with the small-
amplitude case is that the initial aspect ratio for this case is 5,
whereas the aspect ratio for the earlier case was 1.4. In the
process of attaining an equilibrium shape, the cylinder un-
dergoes oscillations. Figure 9 shows the results that were
obtained in this simulation. We start with the shape shown in
Fig. 9�a�. The cylinder begins to relax back towards a circu-
lar shape. The central part of the cylinder undergoes thinning
as seen in Figs. 9�c� and 9�d�. It then starts deforming again
as seen in Fig. 9�f� because of inertial effects. A thinning of
the central part is seen �see Figs. 9�h� and 9�i��. These shapes
for liquids undergoing large amplitude oscillations have been
observed experimentally by Apfel et al. �58�. Nugent et al.
�59� have reported similar results using smoothed particle
applied mechanics �SPAM�.

D. Capillary waves

In this section, we will describe results obtained for cap-
illary wave simulations. These simulations provide an oppor-
tunity for testing the two-phase model for a dynamic prob-
lem when no-slip boundary conditions are employed on two
boundaries.

The analytical expressions for time period and decay rate
for this problem are given by Chandrashekar �60�. The time
period and oscillation frequency nondimensionalized by
k3/2��s / ��l+�v� �61� are obtained as real and imaginary
parts of

n =
y2 − 1

�s
, �31�

where y is a solution of the quartic equation

y4 + 4�1�2y3 + 2�1 − 6�1�2�y2 − 4�1 − 3�1�2�y

+ �1 − 4�1�2� + s = 0. �32�

In the above equations, k denotes the wave number of initial
perturbation, �s denotes the surface tension, and �l and �v
denote the density of liquid and vapor phases, respectively.
The quantities s, �1, and �2 are defined are follows:

s =
�s

k��l + �v��2 ,

FIG. 8. �Color online� Snapshots of oscillat-
ing small-amplitude cylinders at DPD times of
�a� 1, �b� 200, �c� 400, �d� 600, �e� 800, and �f�
1000.

FIG. 9. �Color online� Snapshots of large-amplitude oscillations
at DPD times of �a� t=1, �b� t=100, �c� t=200, �d� t=300, �e� t
=400, �f� t=500, �g� t=600, �h� t=700, and �i� t=800.
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�1 =
�l

�l + �v
, �33�

and

�2 =
�v

�l + �v
.

The computational setup for this problem is shown in Fig.
10. Periodic boundary conditions �34� are applied along the
left and right boundaries and no-slip boundary conditions are
used for the top and bottom boundaries.

For implementing the no-slip boundary condition, we use
a layer of frozen particles. The particles that try to penetrate
this frozen layer are reintroduced into the computational do-
main by using a bounce-back reflection rule �62�. The den-
sity of particles in this frozen layer is taken to be equal to the
density of the fluid. It is important to have a correct imple-
mentation of this boundary condition as the forces of inter-
action between DPD particles in the two-phase model are
density dependent and erroneous calculation of density near
the walls may lead to instabilities in the code. The simulation
parameters are the same as those shown in Table I. The di-
mension of the computational domain was 49.32�49.32 in
DPD units. The thicknesses of the top and bottom walls are

equal to the cut-off radius rc used in Eqs. �7� and �18� for the
model. The dimension of the computational domain along
the x direction is 372.8 times the thermal length scale defined
in Eq. �22�. The initial amplitude of the sinusoidal distur-
bance is 5% of the length of the computational domain along
the x direction. The simulation parameters used here corre-
spond to a negligibly small density for the vapor phase. The
initial configuration consists of a regular arrangement of par-
ticles with a density that corresponds to the equilibrium den-
sity in the liquid phase. This simulation was performed using
30 000 particles. Figure 11 shows the snapshots of capillary
waves at DPD times of 1, 350, 700, and 1000 units from the
start of simulation. We see that the configuration at time of
350 units is inverted compared to the initial configuration.
The wave again reverts back close to its initial configuration
at a time of 700 units but with reduced amplitude. The os-
cillations have died down in the final snapshot at time of
1000 units.

Figure 12 shows the oscillations of capillary waves as a

FIG. 12. Location of interface as a function of
time. Values are in DPD units.

FIG. 10. Computational domain for the simulation of capillary
waves.

FIG. 11. �Color online� Snapshots of capillary waves at DPD
times of �a� 1, �b� 350, �c� 700, and �d� 1000.
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function of time for the simulation presented here. The loca-
tion of the interface is determined by using the same criteria
used in oscillation studies of liquid cylinder. We see from
Fig. 12 that the oscillations decay with time. At the time of
about 1000 units, the amplitude of capillary waves is of the
order of the amplitude of thermal fluctuations and they be-
come indistinguishable from each other. The time period of
oscillations obtained from this plot is found to be 680±18 in
DPD units. The error estimate in time period is determined
using the same method as for small-amplitude oscillations.
The decay rate of oscillations from these results is found to
be �1.68±0.16��10−3. The error estimate in decay rate is
determined by taking the thermal length scale into consider-
ation while calculating the interfacial location. The corre-
sponding values for the time period and decay rate obtained
from the analytical solution in Eq. �32� are 757.3 and 1.94
�10−3, respectively. When solving Eq. �32�, we need to
know the surface tension and viscosity of the liquid. Surface
tension was determined from the Laplace law simulations
reported earlier. Viscosity was determined by simulating a
case of Poiseuille flow until steady state was attained. The
velocity profile was then compared with the analytical para-
bolic profile to get the viscosity. The Poiseuille flow simula-
tion was also performed by employing the no-slip boundary
condition described in this section.

We see that the time period obtained from DPD simula-
tions differs from the analytical value by 10.2%. The mean
value of decay rate differs from the analytical value by
13.4%. This may arise from the fact that the analytical solu-
tion for capillary waves does not take the bulk viscosity of
the fluid into consideration while this bulk viscosity is
present in DPD simulations. Such a difference in decay rates
for oscillations of a liquid drop has been observed earlier by
Arcidiacono et al. �57�, and they had attributed the large
difference between analytical and computed values of damp-
ing constant to the absence of bulk viscosity in the derivation
of the analytical solution.

E. Simulations at different temperatures

The simulation results that were presented in previous
sections were for the case when the ambient is a vacuum.
The two-phase model that has been developed in this work,
however, is generic and can be used for simulations at lower
liquid-to-vapor density ratios. To demonstrate this, we per-
formed simulations at different temperatures. The equilib-
rium vapor density will be higher at higher temperatures. The
simulation parameters are shown in Table II. They corre-
spond to a mean-field critical temperature of 1.19 in DPD
units. We performed simulations of liquid cylinder formation
starting with a blob of fluid in a two-dimensional periodic
box as described in the section on the verification of Laplace
law. Figure 13 shows the results at temperatures of 0.5, 0.6,
0.7, 0.8, 0.9, and 1.0. We see that the number of particles in
the vapor phase is greater at higher temperatures. This is also

TABLE II. Parameters used for simulations at low density
ratios.

Parameter

Equation in
which the
parameter
appears

Value in
DPD units

kBT �5� and �21� 0.5, 0.6, 0.7,
0.8, 0.9, and
1.0

a �van der Waals parameter� �21� 1.0�10−1

b �van der Waals parameter� �21� 2.5�10−2

Mean-field critical density — 13.33

Mean-field critical temperature — 1.19

� �2� 2.0

 �21� 5.0�10−3

Time step �t �6� and �8� 1.0�10−2

rc �7� and �18� 1.11

N — 10 000

Domain dimensions �x x y� — 30.0�30.0

FIG. 13. �Color online� Formation of liquid cylinder at DPD
temperatures of �a� 0.5, �b� 0.6, �c� 0.7, �d� 0.8, �e� 0.9, and �f� 1.0.
The mean-field critical temperature is 1.19 in DPD units.

FIG. 14. Equilibrium liquid-to-vapor density ratio at different
temperatures. Temperature is in DPD units.
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evident in Fig. 14, which shows the computed equilibrium
density ratios at different temperatures. We see that the den-
sity ratio is lower at higher temperatures.

IV. SUMMARY AND CONCLUSIONS

In this work, we have presented a mean-field theory-based
DPD model for two-phase systems involving liquid and
vapor phases. In order to have a stable two-phase system, the
liquid and vapor phases must be segregated and surface ten-
sion should be active in the interfacial region. In the model
developed, phase segregation between the two phases arises
because of an equation of state with a van der Waals loop.
We have used the van der Waals equation of state to provide
this feature. Surface tension is modeled by a term that de-
pends on higher-order density gradients and accounts for
long-range attractive forces not accounted for in the model.
These features enter the DPD system through the conserva-
tive force whose amplitude now depends on density and its
gradients. The terms dependent on density gradients become
important in the interfacial region and give rise to surface
tension. The strength of surface tension can be controlled
using a free parameter. We have presented several test cases
including simulations of a liquid layer, verification of
Laplace’s law, small- and large-amplitude oscillations of liq-

uid cylinders, and capillary waves. The surface tension ob-
tained from liquid layer simulation differs from that obtained
from Laplace law simulations by 3.4%. The surface tension
obtained from small-amplitude oscillations of liquid cylin-
ders differs from the Laplace law value by 4.2%. The results
from large-amplitude oscillations of liquid cylinders are in
qualitative agreement with other published results �58,59�.
For capillary wave simulations, the time period, of oscilla-
tions differ from the analytical value by about 10%, while a
difference of about 14% is observed between the computed
and analytical values of decay rate. The difference in decay
rate can be attributed to the fact that the analytical solution
does not account for bulk viscosity, which is always present
in DPD simulations. For simulations involving interfacial
dynamics, we have also pointed out the importance of the
thermal length scale that accounts for the thermal energy of
particles. For such simulations, it is important to have the
characteristic dimension of the problem much larger than the
thermal length scale. To demonstrate the generic nature of
the model in its ability to represent two-phase systems at
different density ratios, we also presented results of forma-
tion of a liquid cylinder at different temperatures that corre-
spond to different density ratios between the liquid and vapor
phases. It is shown that the equilibrium density ratio is lower
at higher temperatures, as expected.
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